If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+8X-368=0
a = 1; b = 8; c = -368;
Δ = b2-4ac
Δ = 82-4·1·(-368)
Δ = 1536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1536}=\sqrt{256*6}=\sqrt{256}*\sqrt{6}=16\sqrt{6}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-16\sqrt{6}}{2*1}=\frac{-8-16\sqrt{6}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+16\sqrt{6}}{2*1}=\frac{-8+16\sqrt{6}}{2} $
| -22=-8+w/2 | | 7x+10x+18+2=-5 | | 7x+5=12x-10x= | | |(x+5)|=8 | | -4+4w=16 | | 7u+3u=24 | | F(x)=-2x^2-6x+10 | | 1s-3=-5-1s | | 5/4(20x-12)=-35 | | 5(8-3x)=15 | | 5b-7+7b=-19 | | 3^3x+1=27 | | 2*0-4y=6 | | 2•0-4y=6 | | 1+2x+33=90 | | 1+2x+33=180 | | 8.6x(2.2x2x)=65 | | 50+40x=30+45x | | 4+7x-6x=-4 | | p÷4=0.7 | | -13v=13 | | 0-4y=6 | | 7.25q=17.014 | | 3(x-4)-8=4(4+x) | | 7x+3(-3x)=5 | | 0=3x^2-650x-140000 | | -2=2x-46 | | 2n-13=35 | | 2(7+t)+4t=20 | | 3b^2-6=12b-6 | | X^2+16x+63=(x+9) | | -0.03x^2-0.5x+60=0 |